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Abstract

This study investigated the robustness of the James second-order test (James,

1951: Wilcox, 1939) and the univariate F test under a two-factor fixed-effect ANOVA

model where cell variances were heterogeneous and/or distributions were non-normal.

Using computer simulated data (SAS/IML [1989]), Type I error rates and statistical power

for the two tests were estimated. With data sampled from normal distributions, the F test

was not robust to variance heterogeneity for equal or unequal sample sizes, but the James

second order test was robust in thesc: situations. With normal distributions, equal

variances, and equal sample sizes, the magnitude of power difference between the two

tests was generally small when testing the main effects, but the magnitude of power

difference between the two tests varied when testing the interaction effects. With data

sampled from non-normal distributions, although the James second-order test generally

was liberal when the population distribution was skewed, the current study showed that

the test was robust under several non-normal distribution situations. Additionally, the

robustness of the James second-order test in factorial designs may be affected by

combinations of non-normal distributions, sample sizes, and variance patterns. (The F test

was not examined under non-normal distributions because the F test does not provide a

valid test for many heterogeneous variance situations.)
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A number of studies have investigated the robustness of omnibus tests when

testing the equality of K means under variance heteroscedasticity and/or distribution non-

normality. The univariate F-test, the Brown and Forsythe (1974) F.-test, the Welch (1951)

test, and the James (1951) second-order test are the omnibus tests most frequently

considered. Earlier studies that dealt with the validity of omnibus tests under variance

heterogeneity and/or distribution non-normality include Brown and Forsythe (1974),

Clinch and Keselman (1982), Wilcox, Char lin, and Thompson (1986), and Oshima and

Algina (1992a). These studies showed that neither the F-test nor the alternatives

adequately control the Type I error rate under the nominal significance level when

extreme violations of the variance equality and/or normality occur.

Wilcox (1988) proposed a new alternative, H, which was computationally simpler

than the James second-order test. Wilcox showed that although the H test has properties

comparable to the James second-order test, it was slightly less powerful the James second-

order test. Wilcox (1989) proposed a modification of the H-test, H, , which was shown to

provide statistical power more comparable to the James second-order test. Oshima and

Algina (1992a) pointed out that the Wilcox (1988) study focused on the effect of variance

heterogeneity for both the James second-order test and the H test when sampling from

normal distributions. Non-normality was studied but not in combination with variance

heterogeneity. They argued that not considering the impact of the combined violations of

variance homogeneity and distribution normality was an important omission. Their

investigation of the robustness of the James second-order test and Wilcox H, test under

heteroscedasticity and non-normality revealed that the empirical Type I error rates for

both tests were affected when variance homogeneity and distribution normality both were

violated. They also indicated that the magnitude of difference between the empirical Type
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I error rate and nominal a level is positively related to the degree of asymmetry; the

greater the degree of asymmetry, the greater difference between the empirical Type I

error rate and nominal a level.

While most of the investigations into the robustness of ANOVA have concentrated

on the one-factor design, Milligan, Wong, and Thompson (1987) investigated the

robustness properties of nonorthogonal two-way fixed-effect ANOVA models. They

concluded that each of the standard computational routines of ANOVA for unequal cell

size was not robust to the assumptions of variance homogeneity or normality. When

sample sizes were equal, however, they found that violating the homogeneity of variance

assumption had little effect on the actual Type I error rate. Although they suggested four

alternatives for dealing with unbalanced designs with variance heterogeneity or non-

normal distributions, Keppel (1991, p. 283) stated that none of these alternatives is as

effective as avoiding unequal sample sizes in the first place. Nonetheless, this alternative

is often not an option in applied research where unbalanced designs are common.

Wilcox (1989) generalized his Elm test for situations involving a factorial structure,

the U test. After comparing the robustness properties of the U test and the James

second-order test ui Jer various heterogeneous variance conditions, Wilcox (1989)

concluded that both ,:he U test and the James second-order tests (a) performed well under

null conditions and that they generally controlled the Type I error rate under the non-iinal

a level: (b) provided sufficient power under non-null conditions; and (c) can be extended to

higher-order designs. Hsiung, Olejnik, and Huberty (1994), however, showed that the U

test does not adequately control the Type I error rate when the sample sizes are unequal

and population means differ from zero. Therefore, Hsiung et. al concluded that the U test
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is invalid for most practical situations and recommended the James second-order test for

factorial designs.

After conducting a meta-analysis on the robustness of ANOVA to variance

heterogeneity, Harwell, Rubinstein, Hayes, and Olds (1992) concluded that there is an

absence of well-documented omnibus tests that can be applied to two-factor fixed-effects

ANOVA cases. They advised that there is a need for an investigation into the robustness

of available omnibus tests in two-factor ANOVA models. Responding to this call for

further study of two-factor fixed-effect ANOVA models, the current investigation examines

the robustness of the F-test and the James second-order test under heteroscedasticity

and/or non-normality. Oshima and Algina (1992a) had shown that the James second-order

test was affected by asymmetric distributions in a single factor design, but they only

included two asymmetrical non-normal distributions (i.e., the Beta and the ExTonential

distributions). Moreover, the Exponential non-normal distribution is not common in

applied research. Fleishman (1978) indicated that the "typical" non-normal empirical

distributions are with the degree of skew less than 0.8 and the magnitude of kurtosis

between -0.6 and +0.6. The current study, therefore, examines robustness of the

univariate F-test and the James second-order test in two factor designs with data sampled

from more typical non-normal distributions.

Method

The present study included five two-factor fixed-effect ANOVA models: 2 x 2, 2 x 3,

3 x 3, 3 x 4, and 4x4. Each model was studied under at least six conditions with each

condition defined by sample sizes, population variances, and population distributions. Not

all models were included for all conditions. Fifteen population distributions were

considered; each population distribution was defined by the degrees of skew and kurtosis.
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Twenty-six variance patterns were selected; each variance pattern consisted of different

cell variances (Table 1 lists the characteristics of the 26 variance patterns). The sample

sizes, variance patterns, magnitude of skew, and magnitude of kurtosis are reported in

Tables 2 to 8 along with the results.

Insert Table 1 About Here

The present study used SAS/IML (SAS Inc, 1989) software to generate the data and

compute the test statistics. Using the SAS-RANNOR function, scores for each cell were

generated independently, Yip, - (ik ojk2). Each population mean equaled 0 under the null

conditions and the cell_11 mean equaled 5 under the non-null conditions. Using the

Fleishman (1978) transformation procedure, data were transformed to have a distribution

with the target degrees of skew and kurtosis. For each condition, 10,000 replications were

generated and the proportion of times the omnibus tests were rejected at the a = .05 level

was recorded. A test was concluded liberal if its empirical Type I error rate exceeded

.0544 (i.e.. 2-reater than the two standard errors of the nominal significance level).

For each replication, the data were analyzed by using the univariate F-test and the

James second-order test. For the James second-order test formula refer to Wilcox [1989];

for the univariate F-test the unweighted means solution (regression approach) was used.

Results

Tables 2 and 3 present the results for the F-test and the James second-order test

based on small (average cell size equals 5, Table 2) and large (average cell size equals 25,

Table 3) sample sizes when sampling from normall..opulation distributions. Balanced,

slightly unbalanced, and extremely unbalanced designs were considered. Each table

7
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includes three variance patterns with the coefficient of variance variation (Keselman

Rogan, 1978) ranging between 0 and 1.18.

Insert Tables 2 and 3 About Here

Results from Tables 2 and 3 reveal that, under heteroscedasticity, the F-test can

have empirical Type I error rates greater than the nominal significance level even when

sample sizes are equal. These results contradict Milligan, Wong, and Thompson (1987),

who concluded that the F-test is valid under heterogenous variances when sample sizes

are equal. The present results support Wilcox's (1987) cautionary note that, while equal

sample sizes may reduce the effect of heterogeneous variance on the Type I error rate, the

F-test may still be liberal if the degree of variance heterogeneous is great. In the present

study, the small sample sizes variance ratio of 3:1 was sufficient to invalidate the

univariate F-test.

With unequal sample sizes and unequal variances, the F-test can be either

conservative or liberal depending upon the relationship between the patterns of

heterogeneity and the sample sizes. This relationship has been shown repeatedly in

previous research on the effect of variance heterogeneity on ANOVA Type I error rates. It

has been suggested that the effect of variance heterogeneity in unbalanced designs can be

reduced if sample sizes are large (e.g., Maxwell and Delaney [1990, p. 1101). The results

presented here support that belief to degree, but even with relatively large samples with

extreme sample size inequality, the F-test had empirical Type I error rates less than the

nominal significance level. These results support Wilcox's (1987) position that it is
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difficult to know how large a sample size is needed to reduce the effects of unequal

variances.

The James second-order test had the Type I error rates that ranged between .0456

and .0530 when sample sizes were large and ranged between .0420 and .0544 when sample

sizes were small across both balanced and unbalanced designs. These results support the

conclusion that the James second-order test is robust to variance heterogeneity for equal

or unequal sample sizes when the population distributions are normal.

Table 4 presents the empirical power estimates for the univariate F-test and the

James second-order test when sampling from normal population distributions with equal

variance and equal sample sizes. Results show that for many of the hypotheses tests, the

James second-order test is only slightly less powerful than the univariate F-test. The

power difference between the two tests is in the range of magnitude from .000 to .052

when testing main effects and is in the range of magrlitude from .000 to .202 when testing

interaction effects.

Insert Table 4 About Here

Results show that when testing the main effects, the magnitude of power difference

between the two tests was generally small. However, when testing the interaction effects,

the magnitude of power difference between the two tests varied. The magnitude of the

power difference depends on the number of interaction contrasts that are conducted.

Wilcox (1989) suggested using the Bonferroni procedure to adjust the nominal a level for

each contrast (i.e., a' = a / [min(J, K) - 1] ). This approach reduces the statistical power

of the James second-order test if the minimum of (J, K) 3. Using the Holland-
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Copenhaver (1987) enhancement to the Bonferroni procedure would likely reduce the

power difference between the F-test and the James second-order test.

Results for the James second-order test when data were sampled from non-normal

distributions are reported in Tables 5 through 7. Univariate F-test results are not

included in these tables since, as shoNNTI previously, the F-test does not provide a valid test

for many situations where variances are heterogeneous.

Table 5 presents the results for the James second-order test for the two by four

fixed-effects ANOVA model. A total of 72 conditions were considered; each condition was

defined by the sample size (design type), distribution type, and variance pattern. Three

distributions were considered. They were (a) normal distribution, (b) positively skewed-

leptokurtic non-normal distribution (skew = 1.75 and kurtosis = 3.75), and (c) platykurtic

non-normal distribution (skew = 0, kurtosis = -1.0).

Consistent with Tables 2 and 3, the James second-order test was valid when the

assumption of normality was m. . But when data were sampled from a population

distribution that was skewed, the James second-order test frequently had Type I error

rates greater than the nominal significance level. With the same non-normal distribution,

the test was more liberal when sample sizes were extremely unequal than when sample

sizes were equal or slightly unequal.

When data were sampled from the platykurtic non-normal distribution, the James

second-order test was robust when sample sizes were equal or slightly unequal, but

appeared to be liberal when sample sizes were extremely unequal.

Although the James second-order test may be liberal when the assumption of

normality is violated, the mrrent results show that the test is robust under several non-

normal distribution situations. It appears that in a factorial design, the robustness of the

0
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James second-order test may be affected by combinations of non-normal distributions,

sample sizes, and variance patterns.

Table 6 presents the results for the James second-order test under a four by four

fixed-effect balanced factorial design. A total of 72 conditions were included with each

condition being defined by the sample size, variance pattern, degree of skew, and degree of

kurtosis.

Insert Table 6 About Here

When the assumption of variance homogeneity was met, but normality was violated,

the James second-order test had empirical Type I error rates that did not exceed two

standard errors above the nominal significance level. However, the James second-order

test was conservative when sample sizes were small - empirical Type I error rates were

generally less than two standard errors below the nominal significance level.

The James second-order test appeared to be liberal when the degree of skew was

equal to or greater than 1.0. Yet, the patterns of sample size, variance, and degree of

kurtosis also had some effect on the robustness of the test.

With the same degree of skew, the current results show that the James second-

order test had greater Type I error rates when the degree of kurtosis was small than when

the degree of kurtosis was large.

Table 7 presents the results for the James second-order test under two by four

balanced and unbalanced fixed-effect designs. Data were sampled from 12 non-normal

distributions; each distribution was defined by the degrees of skew and kurtosis.
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Insert Table 7 About Here

When the variances were equal and the degree of skew was less than 1.50, the

James second-order test generally controlled the Type I error rate under the nominal

criterion a level. But the James second-order test appeared to be liberal when the degree

of skew was equal to 1.50. With the same degree of skew, the test generally had greater

Type I error rate when the degree of kurtosis was small than when the degree of kurtosis

was large. Finally, it appears that a balanced design might reduce the effect of skewed

distributions somewhat. However, as demonstrated in Tables 6 and 7, a balanced design

cannot be relied on to provide a valid test when distributions are skewed.

Conclusions

Contrary to what some believe (Milligan, Wong, & Thompson, 1987), the univariate

F-test for a factorial design is not robust to the violation of the equal variance assumption

when sample sizes are equal. The present study shows that the actual Type I error rate

for the F-test can exceed the nominal significance level when sample sizes are equal but

cell variances differ by as small as a 3 to 1 ratio. The James second-order test, on the

other hand, control the actual risk of a Type I error under the nominal significance level

(ci - .05) when sampled populations have normal distributions. Further, the study

provides some evidence indicating that when all parametric assumptions are met, the

James second-order test provides statistical power comparable to the univariate F-test at

least for hypotheses on main effects. Considerably lower power might be obtained for the

interaction test depending on the dimensions of the factorial structure. The lower power

can be attributed to the use, in the present study, of the Bonferroni adjustment for

12
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multiple hypothesis tests. If one of the enhancements to the Bonferroni method was

used, the power difference between the univariate test and the James second-order test,

however, would be reduced. In addition, if an omnibus test is of interest and it is

reasonable to assume normal population distributions, the F-test should be abandoned in

favor of the James second-order test.

Micceri (1989) reported that sampling from normal population distributions may be

the exception rather than the rule in educational research. With both skewed-leptokurtic

and platykurtic distributions, the James second-order test may not adequately control the

risk of a Type I error to the nominal significance level. The degree of non-normality,

variance heterogeneity, and the inequality of sample sizes all can affect the actual risk of a

Type I error rate. The results of the present study did not rnake clear the exact

relationship among these three factors. However, it did appear that having equal sample

sizes can reduce the effect of non-normal distributions and heterogeneous variances on the

Type I error rate.

Finally, Keppel (1991, p. 105) indicated that the James second-order test, the

currently favored procedure, is "simply too complicated for general use." Recently, Oshima

and Algina (1992b) developed a SAS/IML program for one-factor designs and Hsiung,

Olejnik, and Oshima (1994) developed a SAS/IML program for two-factor fixed-effect

designs. Lix and Keselman (1994) have developed a more general program to compute

approximate degrees of freedom tests for both univariate and multivariate omnibus tests

as well as tests for contrasts. With these computer programs available for application of

alternative tests to the univariate F-test, the "disadvantage" of being cornputationa"

intense should not be a limitation.

13



James and F Tests

13

References

Brown, M. B., & Forsythe, A. B. (1974). The small sample behavior of some

statistics which test the equality of several means. Technometrics, 16, 129-132.

Fleishman, A. I. (1978). A method for simulating non-normal distributions.

Psvchometrika, 43, 521-532.

Harwell, M. R., Rubinstein, E. N., Hayes, W. S., and Olds, C. C. (1992).

Suimnarizing Monte Carlo results in methodological research: The one- and two-

factor fixed-effects ANOVA cases. Journal of Educational Statistics, 17, 297-313.

Holland, B. S., & Copenhaver, M. D. (1987). An improved sequentially rejective Bonferroni

test procedure. Biometrics, 43, 417-423.

Hsiung, T., & Olejnik, S. (1993). Contrast analyses for the additive nonorthogonal

two-factor design in the unequal variance case. Paper presented at the annual

meeting of the American Educational Research Association, Atlanta.

Hsiung, T., Olejnik, S., Huberty, C. (1994). Comment on a Wilcox test statistic for

comparing means when variances are unequal. Journal nf Educational Statistics (in
press).

Hsiung, T., Olejnik, S., Oshima, T. C. (1994). A SAS/IML program for applying the James

second-order test in two-factor fixed-effect ANOVA models. Manuscript submitted

for publication.

James, G. S. (1951). The comparison of several groups of observations when the

ratios of the population variances are unknown. Biometrika, 38, 324-329.

Keppel, G. (1991). Design and analysis: A researcher's handbook (3rd ed.).

Englewood Cliffs, NJ: Prentice Hall.

Keselman, H. J., & Rogan, J. C. (1978). A comparison of the modified Tukey and

Scheffé methods of multiple comparisons for pairwise contrasts. Journal of the

American Statistical Association, 73, 47-52.

Lix, L. M., & Keselman, H. J. (1994). Approximate degrees of freedom tests: A unified

perspective on testing for mean equality. Manuscript submitted for publication.

Maxwell. S. E., & Delaney, H. D. (1990). Designing experiments and analyzing

data: A model comparison perspective. Belmont, CA: Wadsworth.



James and F Tests

14

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creature.

Psychological Bulletin, 105, 156-166.

Milligan, G. W., Wong, D. S., & Thompson P. A. (1987). Robustness properties of

nonorthogonal analysis of variance. Psychological Bulletin, 101, 464-470.

Oshima, T. C., & Algina, J. (1992a). Type I error rates for James's secohd-order

test and Wilcox's Hm test under heteroscedasticity and non-normality. British

Journal of Mathematical and Statistical Psychology, 45, 225-263.

Oshima, T. C., & Algina, J. (1992b). A SAS program for testing the hypothesis of

the equal means under heteroscedasticity: James's second-order test. Educational

and Psychological Measurement, 52, 117-118.

SAS Institute Inc. (1939). SAS/IML software: Usage and reference, Version 6 (1st ed.).

Cary, NC: Author.

Welch, B. L. (1951). On the comparison of several mean values: An alternative

approach. Biometrika, 38, 330-336.

Wilcox, R. R. (1987). New designs in analysis of variance. Annual Review of

Psychology. 38, 29-60.

Wilcox. R. R. (198S). A new alternative to the ANOVA F and on James's second-

order method. British Journal of Mathematical and Statistical Psychology, 41, 109-

117.

Wilcox. R. R. (1989). Adjusting for unequal variances when comparing means in

one-way and two-way fixed effects ANOVA methods. Journal of Educational

Statistics, 14, 269-278.

Wilcox, R. R., Charlin, V. L., & Thompson, K. L. (1986). New Monte Carlo results

on the robustness of the ANOVA F, W, and F* statistics. ComMunication in

Statistics - Simulation and Computation, 15, 933-943.

1



James and F Tests

15

Table 1.

Summary Table for the Characteristics Variance Patterns Considered.

Variance Pattern

Pattern Within Row Cross Average Row Within Column Cross Average Column

1 Equal Equal Equal Equal,
2' Equal Unequal Unequal Equal

Unequal Equal Equal Unequal

4' Unequal Equal Unequal Equal
5d Unequal Equal Unequal Unequal

6' Unequal Unequal Unequal Equal
-f
i Unequal Unequal Unequal Unequal

Note. 'For examples, Tables 2 and 3: all unequal variance patterns, Tables 5 and 8:

(1. 1, 1, 1 ; 9, 9, 9, 9), and Table 6: (1, 1, 1, 1 ; 4, 4, 4, 4 ; 16, 16, 16, 16).

bFor examples, Table 5: (16, 9, 4, 1 ; 16, 9, 4, 1) and

Tables 6 and 7: (1, 4, 9, 16 ; 1, 4, 9, 16 ; 1, 4, 9, 16).

`For examples, Table 5: (4, 4, 1, 1 ; 1, 1, 4, 4) and

Table 7: (1. 16. 9. 4 : 4, 1, 16, 9 : 9, 4, 1, 16 ; 16, 9, 4. 1).

dFo- example, Tables 5 and 8: (16, 9, 4, 1 ; 1, 4, 9, 16).

'For example, Table 5: (16, 14, 12, 10 ; 2, 4, 6, 8).

Tor examples. Table 5: (16, 14, 12, 10 ; 8, 6, 4, 2) and

Table 6: (1, 4, 9, 16 ; 16, 13, 8, 1 ; 4, 9, 16, 1).
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Table 2

Type I Error Rate for the Univariate F test and the James Second-Order Test in

Balanced/Unbalanced Two by Two, Two by Three, or Three by Three Fixed-Effect Factorial

Designs with Small Sample Sizes

Sample Size Variance Factor

F test

Type of Design

BA' SUb EU`

James Test

Type of Design

BA' SUb EU'
9 x 9

'BA: Balanced Design
(5, 5 ; 5, 5)

bSU: Slightly Unbalanced
(6, 4 ; 4, 6)

'EU: Extremely Unbalanced
(8, 2 ; 7, 3)

1 , 1

1 , 1
A

Bc01

AxB

.0479

.0479

.0471

.0552

.0534

.0575

.0499

.0481

.0501

.0440

.0445

.0439

.0453

.0460

.0476

.0555

.0544

.0529

3 , 1
3 , 1

AR,,

Bc01

AxB

.0518

0531
.0545

.0552

.0534

.0575

.0136

.0142

.0112

.0458

.0465

.0476

.0481

.0473

.0487

.0531

.0496

.0499

16, 1
16, 1

Bc01

AxB

.0628

0572

.0626

.0629

.0601

.0655

.0045

.0029

.0047

.0493

.0491

.0453

.0479

.0145

.0493

.0481

.0480

.0496

2 x 3

'BA: Balanced Design
(5, 5, 5 ; 5, 5 ,5)

bSU: Slightly Unbalanced
(6, 5, 4 ; 7, 5, 3)

'EU: Extremely Unbalanced
(8, 5, 2 ;-9, 4, 2)

1, 1, 1
1, 1, 1

Allow

AxB

.0506

.0486

.0479

.0499

.0498

.0523

.0505

.0581

.0557

.0479

.0426

.0423

.0481

.0428

.0448

.0538

.0539

.0537

3, 1, 1 ARaw

Bc01

AxB

.0507

.0572

.0607

.0277

.0278

.0258

.0125

.010S

.0092

.0450

.0499

.0445

.0451

.0449

.0452

.0463

.0483

.0446

16, 1, 1
16, 1. 1

ARa.

Bcol

AxB

.062S

.0869

.0850

.0193

.0259

.0276

.0014

.0019

.0020

.0467

.0437

.0430

.0495

.0416

.0434

.0440

.0431

.0450

3 x 3

'BA: Balanced Design
(5. 5, 5; 5, 5, 5; 5, 5 ,5)

1, 1, 1
1, 1, 1
1, 1, 1

AR0,

Bc01

AxB

.0445

.0473

.0496

.0488

.0517

.0503

.0464

.0558

.0532

.0395

.0436

.0877

.0421

.0442

.0390

.0407

.0420

.0514
bSU: Slightly Unbalanced

(6, 5, 4; 7, 5, 3; 7, 4, 4)

'EU: Extremely Unbalanced
(8, 5. 2; 9, 4, 2; 8, 4, 3)

3, 1, 1
3 1, 1,

3, 1, 1

ARa,

Bc01

AxB

.0524

:0578

.0606

.0996

.0240

.0212

.0091

.0092

.0061

.0449

.0450

.0365

.0439

.0392

.0370

.0408

.0423

.0484

16. 1. 1
16, 1, 1
16, 1, 1

A11,,

B0e'
AxB

.0665

0845

.0966

.0104

.0175

.0151

.0005

.0013

.0009

.0494

.0451

.0427

.0470

.0427

.0379

.0453

.0370

.0449

Note. Data were sampled from normal distributions. Shading indicates that the value is

greater than the criterion .0544 and the test has an inflated Type I error rate.
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Table 3

Type I Error Rate for the Univariate F test and the James Second-Order Test in

Balanced/Unbalanced Two by Two, Two by Three, or Three by Three Fixed-Effect Factorial

Designs with Large Sample Sizes

Sample Size Variance Factor

F Test

Type of Design

BA' SUb EUC

James Test

Type of Design

BA' SUb EUC

9 x 2

'BA: Balanced Design
(25, 25 ; 25, 25)

bSC:: Sligntly Unbalanced
(2r, 23 ; 26, 24)

'EU: Extremely Unbalanced
(35, 15 ; 37, 13)

1 , 1

1 , 1

AR

BCol

AxB

.0517

.0528

.0463

.0516

.0527

.0519

.0497

.0529

.0495

.0514

.0526

.0462

.0518

.0525

.0515

.0484

.0520

.0512

3 , 1

3 , 1
AR,

BCol

AxB

.0463

.0511

.0529

.0452

.0429

.0448

.0132

.0150

.0152

.0456

.0505

.0518

.0518

.0485

.0501

.0479

.0475

.0536

16, 1
16, 1

ARc,

BCol

AxB

.0520

.0526

.0539

.0410

.0428

.0394

.0029

.0039

.0024

.0490

.0497

.0514

.0499

.0528

.0483

.0481

.0529

.0488

2 x 3

3BA: Balanced Desio
(25, 25, 25 ; 25, 25 ,25)

bSU: Slightly Unbalanced
(23, 25, 23 ; 27, 26, 22)

'EU: Extremely Unbalanced
(32, 25, 18 j 30, 26, 17)

1, 1, 1
1, 1, 1

AR0..

Bco;

AxB

.0459

.0510

.0520

.0497

.0506

.0485

.0531

.0489

.0513

.0458

.0500

.0595

.0498

.0512

.0492

.0532

.0484

.0489

3, 1, 1
3, 1, 1

A.
BCol

AxB

.0476

.0544

.0554

.0459

.0503

.0416

.0293

.0275

.0999

.0466

.0466

.0485

.0597

.0527

.0459

.0511

.0511

.0483

16, 1, 1
16, 1, 1

BCol

AxB

.0528

.0760

.0824

.0385

.0555

.0563

.0165

.0287

.0299

.0500

.0491

.0525

.0527

.0496

.0470

.0485

.0476

.0524

3 x 3

'BA: Balanced Design
20, 20, 20
20, 20, 20
20, 20, 20

bSU: Slightly Unbalanced
23, 19, 18
21, 22, 17
22, 19, 19

'EU: Extremely Unbalanced
32, 16, 12
29, 20, 11
30, 21, 9

1, 1, 1
1, 1, 1
1, 1, 1

Allow

Bc.1

AxB

.0492

.0515

.0505

.0548

.0467

.0521

.0505

.0526

.0562

.0488

.0495

.0491

.0533

.0468

.0477

.0480

.0492

.0460

3, 1, 1
3, 1, 1
3, 1, 1 Bcol

AxB

.0506

.0543

.0590

.0418

.0451

.0426

.0126

.0131

.0081

.0487

.0491

.0481

.0515

.0526

.0462

.0487

.0476

.0487

16, 1, 1
16, 1, 1
16, 1, 1

A.
BCol

AxB

.0555

.0756

.0857

.0321

.0546

.0560

.0012

.0049

.0099

.0536

.0483

.0478

.0498

.0484

.0453

.0524

.0500

.0474

Note. Data were sampled from normal distributions. Shading indicates that the value is

greater than the criterion .0544 and the test has an inflated Type I error rate.
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Table 4

Statistical Power for the Univariate F test and the James Second-Order Test in Balanced

Two by Two, Two by Three, or Three by Three Fixed-Effect Factorial Designs

Sample Size Factor F test James Test Power Difference
(F test - James Test)

5, 5 .7458 .7314 .0144
5, 5

Bc., .7438 .7317 .0121

AxB .7483 .7347 .0136

5, 5, 5 AR, .5979 .5855 .0124
5, 5. 5

Bc01 .7772 .7245 .0527

AxB .7742 .7250 .0492

5, 5, 5 Allow .6136 .5723 .0413
5, 5, 5
5, 5, 5 Bc01 .6133 .5703 .0430

AxB .8167 .6146 .2021

25, 25 AR,.. .5924 .5919 .0005
25, 25

Bc01 .6096 .6091 .0005

AxB .5997 .5992 .0005

25, 25, 25 ARow .4492 .4489 .0003
25, 25, 25

Bc.: .6292 .6945 .0047

AxB .6214 .61S7 .0027

20. 20. 20 ARou. .3768 .3720 .0048
20, 20, 20
20. 20. 20 Bc., .3739 .3671 .0068

AxB .5254 .4078 .1176

Note. Data were sampled from normal distributions. The true group mean difference was

created by adding a constant to each observation of the first cell (i.e., Cell_11); the constant

was set equal to 2.5 for nik = 5 and was set equal to 0.9 for nik = 25.
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Table 5

Type I Error Rate for the James Second-Order Test in Balanced/Unbalanced Two by Four

Fixed-Effect Factorial Designs with Normal/Non-Normal Distributions and

Homogeneous/Heterogeneous Variances

Variance
Patten: Factor

Balanced Design
15, 15, 15, 15
15. 15. 15. 15

Slightly Unbalanced
18, 16, 14, 12
17. 16. 14. 13

Extremely Unbalanced
22, 18, 12, 8
24, 20. 10, 6

Distribution

Normal Skew' 'Plat?
Distribution

Normal Skew Platy

Distribution

Normal Skew Platy

1,1.1,1 AR, .0471 .0473 .0501 .0500 .0458 .0497 .0447 .0447 .0489
1,1,1,1

Bc01 .0515 .0529 .0545 .0480 .0559 .0517 .0492 .0657 .0533

AxB .0502 .0450 .0518 .0482 .0381 .0498 .0482 .0378 .0516

1,1,9,9 A. .0510 .0461 .0508 .0481 .0455 .0518 .0492 .0460 .0503
1,1,9,9

11001 .0466 .0738 .0514 .0465 .0741 .0503 .0472 .0913 .0523

AxB .0497 .0392 .0522 .0482 .0432 .0492 .0486 .0328 .0529

4,4.1,1 AR,. .0511 .0493 .0507 .0512 .0488 .0498 .0517 .0530 .0551
1,1,4,4

Bccd .0499 .0564 .0504 .0510 .0563 .0493 .0494 .0709 .0577

AxB .0488 .0679 .0521 .0490 .0684 .0515 .0521 .0761 .0584

16.9.4,1 AR°, .0495 .0528 .0500 .0523 .0486 .0505 .0505 .0518 .0483
16.9,4,1

Bcoi .0459 .0765 .0545 .0463 .0689 .0486 .0499 .0632 .0518

AxB .0476 .0415 .0504 .0474 .0403 .0491 .0500 .0411 .0496

16. 9. 4. 1 AR .0490 .0499 .0508 .0484 .0491 .0599 .0496 .0559 .0576
1, 4, 9, 16

Bc0 : .0492 .0579 .0493 .0534 .0569 .0549 .0496 .0819 .0597

AxB .0506 .0776 .0515 .0504 .0747 .0543 .0497 .1002 .0609

16.14.12,10 A-Row .0512 .0498 .0508 .0508 .0545 .0512 .0467 .0439 .0507
2, 4, 6, 8

Bcca .0486 .0586 .0526 .0490 .0565 .0507 .0524 .0654 .0500

AxB .0484 .0595 .0528 .0497 .0455 .0517 .0501 .0406 .0559

16,14,12,10 ARO .0479. .0533 .0502 6.717 .0520 .0522 .0521 .0489 .0486
8, 6, 4, 2

.0502 .0567 .0538 .0481 .0553 .0578 .0503 .0620 .0544

AxB .0480 .0438 .0536 .0525 .0491 .0516 .0487 .0453 .0503

1,1.1,1 A .0493 .0567 .0509 .0491 .0521 .0518 .0526 .0635 .0548
9,9,9,9

.0504 .0612 .0546 .0463 .0543 .0514 .0501 .0782 .0608

AxB .0471 .0528 .0577 .0464 .0521 .0495 .0498 .0704 .0630

Note. Shading indicates that the value is greater than the criterion .0544; the test has an

inflated Type I error rate.

"Skew: Skewed-leptokurtic non-normal distribution (skew = 1.75, kurtosis = 3.75).

Platykurtic non-normal distribution (skew = 0, kurtosis = -1.0).

20
BEST COPY AMIABLE



T
ab

le
 6

'T
yp

e 
I 

E
rr

or
 R

at
e 

fo
r 

th
e 

Ja
m

es
 S

ec
on

d-
O

rd
er

 T
es

t i
n 

a 
B

al
an

ce
d 

Fo
ur

 b
y 

Fo
ur

 F
ix

ed
-E

ff
ec

t F
ac

to
ri

al
 D

es
ig

n 
w

ith
 N

on
-

N
or

m
al

 D
is

tr
ib

ut
io

n 
D

at
a

S
am

pl
e 

S
iz

e
V

ar
ia

nc
e

S
ke

w

K
ur

to
si

s

.7
5

1.
0

1.
25

1.
50

.5
0

1.
0

3.
75

.5
0

1.
0

3.
75

1.
50

2.
75

3.
75

2.
50

3.
00

3.
75

5,
 5

, 5
, 5

1,
 1

, 1
, I

.0
42

7
.0

14
5

.0
36

8
.0

49
0

.0
46

2
.0

34
6

.0
15

0
.0

41
3

.0
37

5
.0

47
0

.0
12

9
.0

13
8

5,
 5

, 5
, 5

1,
1,

 I,
 1

8,
 5

, 5
, 5

1,
 1

,
1,

I
n
e
o
l

.0
44

8
.0

43
5

.0
36

2
.0

47
0

.0
41

2
.0

37
6

.0
1 

13
.0

.1
14

.0
38

7
.0

47
6

.0
 1

40
.0

12
5

5,
 5

, 5
, 5

I, 
1,

 1
, I

A
x1

3
.0

3(
1)

.0
32

6
.0

23
9

.0
30

9
.0

28
5

.0
22

4
.0

28
0

.0
24

5
.0

23
2

.0
21

0
.0

23
3

.0
21

7

1,
 4

, 9
, 1

6
A

R
a,

.0
13

7
.0

13
0

.0
37

0
.0

49
6

.0
45

6
.0

39
0

.0
47

5
.0

42
6

.0
37

0
.0

39
7

.0
4.

18
.0

13
9

1,
 4

, 9
, 1

6
1,

 4
, 9

, 1
0

13
(7

.0
1

.0
48

0
.0

45
2

.0
38

:1
.0

51
9

.0
51

4
.0

40
1

.0
01

9
.0

51
0

.0
47

3
.0

05
0

.0
61

1
.0

56
6

1,
 4

, 9
, 1

6
A

xi
l

.0
38

9
.0

31
2

.0
26

2
.0

31
5

.0
33

2
.0

25
2

.0
27

1
.0

27
5

.0
22

0
.0

20
8

.0
23

6
02

51

1,
 1

6,
 9

, 4
A
l
t
v
w

.0
48

0
.0

41
5

.0
2,

11
.0

.1
57

.0
45

7
.0

30
5

.0
43

4
.0

.1
01

.0
36

1
.0

43
1

.0
11

7
.0

11
9

4,
 1

, 1
6,

 9
9,

 4
, I

, 1
6

n
C
o
l

.0
42

6
.0

 1
25

.0
:1

82
.0

10
9

.0
47

6
.0

36
5

.0
44

1
.0

12
5

.0
39

0
.0

 1
31

.0
 1

55
.0

11
 1

16
, 9

, 4
, 1

A
xi

l
.0

54
8

.0
46

2
.0

26
1

.0
75

6
06

09
.

.0
32

0
.0

75
8

.0
53

1
.0

41
2

.0
81

0
.0

73
1

.0
58

 1

25
,2

5,
25

,2
5

I, 
1,

 1
, I

A
 R

aw
.0

53
0

.0
.1

77
.0

48
5

.0
47

7
.0

18
6

.0
47

9
.0

52
5

.0
53

6
.0

50
3

.0
53

6
.0

5:
12

.0
52

7
25

,2
5,

25
,2

5
1,

 I,
 1

, I
25

,2
5.

25
,2

5
1,

I, 
1,

 1
B

cm
.0

53
5

.0
51

0
.0

45
8

.0
50

5
.0

51
9

.0
50

8
.0

52
7

.0
00

4
.0

18
2

.0
52

9
.0

51
5

.0
52

8
25

,2
5,

25
,2

5
I. 

1,
 1

, I
A

x1
3

.0
44

5
.0

14
5

.0
39

1
.0

44
8

.0
17

1
.0

10
2

.0
45

3
.0

 1
11

.0
10

7
.0

38
0

.0
 1

16
.0

12
1

1,
 4

, 9
, 1

0
.0

47
8

.0
48

3
.0

45
5

.0
52

0
.0

50
2

.0
47

7
.0

50
0

.0
17

8
.0

51
7

.0
19

0
.0

53
0

.0
53

7
I. 

4,
 9

, 1
6

1,
 4

, 9
, 1

0
B

ro
l

.0
51

3
.0

52
3

.0
18

0
.0

50
5

.0
50

7
.0

53
0

.0
54

6
.0

52
0

.0
13

02
.0

58
3

.0
5 

17
,0

57
3

1,
 4

, 9
, 1

5
A

xi
l

.0
17

7
.0

44
6

.0
38

8
.0

42
1

.0
45

6
.0

40
0

.0
38

0
.0

10
9

.0
 1

15
.0

10
8

.0
38

6
.0

37
3

1,
 1

6,
 9

, 1
.0

50
9

.0
50

8
.0

47
1

.0
16

9
.0

19
8

.0
49

1
.0

51
2

.0
.1

97
.0

53
1

.0
54

1
.0

54
3

.0
52

8
4,

 1
, 1

6,
 9

9,
 4

, 1
, 1

6
B

em
.0

18
2

.0
18

9
.0

15
6

.0
 1

99
.0

49
1

.0
49

3
.0

52
1

.0
,1

83
.0

51
0

.0
50

0
.0

48
9

.0
54

9
10

, 9
, 4

, 1
A

xi
l

.0
53

1
.0

49
7

.0
12

5
.0

51
5

.0
54

9
.0

.1
41

.0
59

9
.0

53
2

.0
18

1
.0

61
1

.0
62

0
.0

59
7

N
o«

,. 
Sh

ad
in

g 
in

di
ca

te
s 

th
at

 th
e 

va
lu

e 
is

 g
re

at
er

 th
an

 th
e 

cr
ite

ri
on

 .0
54

4;
 th

e 
te

st
 h

as
 a

n 
in

fl
at

ed
 T

yp
e 

I 
er

ro
r 

ra
te

.

9`
)



Table 7

Type I Error Rate for the James Second-Order Test in a Two by Four Fixed-Effect Factorial Design with Non-Normal
Distribution Data

Sample Size Variance
Skew 0.50 0.75 1.00 1.25 1.50

Kurtosis 0.50 3.75 0.50 3.75 0.50 3.75 2.50 3.50 3.75 2.50 3.50 3.75
15,
15,

15,
15,

15,
15,

15
15

1, 1, I, 1

1, I, I, 1

10, 9, .1, 1

1, 4, 9, 16

1, 1, 1, 1

9, 9, 9, 9

Now

Beni

Axll

Beni

Axil

AR,,,,,

Bo)!

Axil

.0180

.0517

.0106

.0109

.0512

.0515

.0480

.0526

.0531

.0500

.0486

.0.105

.0490

.0.115

.0104

.0509

.0405

.0405

.0192

.0485

.0478

.0510

.0539

.0571

.0509

.0516

.0553

.0462

.0438

.0452

.0501

.0457

.0.170

.0502

.0146

.0447

.0482

.0546

.0.180

.0510

.0562

.0045

.0509

.0511

.0528

.0516

.0458

.0381

.0468

.0.152

.0502

.0531

.0449

.0159

.0402

.0544

.0480

.0507

.0533

.0606

.0514

.0609

.0502

.0503

.0528

.0439

.0483

.0497

.0589

.0522

.0499

.0176

.0517

.0173

.0480

.0.160

.0517

.0572

.0.195

.0199

.0455

.0533

.0590

.0443

.0468

.0578

.0717

.0513

' .0592

.0534

.0506

.0554

.0431

.0509

.0529

.0656

.0517

.0514

.0515

.0163

.0501

.0394

.0498

.0563

.0672

.0521

.0509

.0540
18,
17,

10,
16,

11,
14,

12
13

1, 1, 1, 1

1, 1, 1, 1

10, 9, 1, 1

1, 1, 9, 16

1, I, 1, I
9 , 9 , 9 , 9

A Row

13Col

Axil

Allay

Bent

Ax13

A Row

13Col

Ax11

.0504

.0470

.0478

.0510

.0505

.0533

.0519

.0528

.0516

.0451

.0.128

.0410

.0468

.0157

.0452

.0482

.0414

.0153

.0505

.0502

.0493

.0510

.0545.

.0555

.0465

.0518

.0502

.0483

.0448

.0449

.0507

.0462

.0439

.0497

.0455

.0458

.0515

.0535

.0432

.0459

.0578

..060

.0513

.05G

;

1

.0540

.0474

.0433

.0485

.0484

.0491

.0506

.0472

0468

.0501

.0510

.0.133

.0501

.0531

.0632

.0540

.0536

.0500

.0499

.0504

.01,11

.0172

.0500

.0529

.0534

.0504

.0514

.0.178

.0496

.0.160

.0491

.0498

.0506

.0511

.0498

.0.193

.0468

.0552

.0418

.0499

.0592

.0742

.0007

.0627

.0553

.0.181

.0535

.0445

.0473

.0520

.0037

.0561

.0520

.0516

.0153

.0542

.0128

.0501

.0534

.0628

.0531

.0591

.0540
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